Axon radius estimation with Oscillating Gradient Spin Echo (OGSE) Diffusion MRI

نویسندگان

  • Bernard Siow
  • Ivana Drobnjak
  • Andrada Ianus
  • Isabel N. Christie
  • Mark F. Lythgoe
  • Daniel C. Alexander
چکیده

The estimation of axon radius provides insights into brain function [1] and could provide progression and classification biomarkers for a number of white matter diseases [2-4]. A recent in silico study [5] has shown that optimised gradient waveforms (GEN) and oscillating gradient waveform spin echo (OGSE) have increased sensitivity to small axon radius compared to pulsed gradient spin echo (PGSE) diffusion MR sequences. In a follow-up study [6], experiments with glass capillaries show the practical feasibility of GEN sequences and verify improved pore-size estimates. Here, we compare PGSE with sine, sine with arbitrary phase, and square wave OGSE (SNOGSE, SPOGSE, SWOGSE, respectively) for axon radius mapping in the corpus callosum of a rat, ex-vivo. Our results suggest improvements in pore size estimates from OGSE over PGSE, with greatest improvement from SWOGSE, supporting theoretical results from [5] and other studies [7-9].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy

Mapping mean axon diameter and intra-axonal volume fraction may have significant clinical potential because nerve conduction velocity is directly dependent on axon diameter, and several neurodegenerative diseases affect axons of specific sizes and alter axon counts. Diffusion-weighted MRI methods based on the pulsed gradient spin echo (PGSE) sequence have been reported to be able to assess axon...

متن کامل

Fast and robust measurement of microstructural dimensions using temporal diffusion spectroscopy.

Mapping axon sizes non-invasively is of interest for neuroscientists and may have significant clinical potential because nerve conduction velocity is directly dependent on axon size. Current approaches to measuring axon sizes using diffusion-weighted MRI, e.g. q-space imaging with pulsed gradient spin echo (PGSE) sequences usually require long scan times and high q-values to detect small axons ...

متن کامل

PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study

PURPOSE To identify optimal pulsed gradient spin-echo (PGSE) and oscillating gradient spin-echo (OGSE) sequence settings for maximizing sensitivity to axon diameter in idealized and practical conditions. METHODS Simulations on a simple two-compartment white matter model (with nonpermeable cylinders) are used to investigate a wide space of clinically plausible PGSE and OGSE sequence parameters...

متن کامل

Towards Quantitative Measurements of Tissue Microstructure using Temporal Diffusion Spectroscopy

Diffusion MRI provides a non-invasive means to characterize tissue microstructure at varying length scales. Apparent diffusion coefficients (ADCs) of tissue water may be measured at relatively long diffusion times with conventional pulsed gradient spin echo (PGSE) methods, or at much shorter effective diffusion times using oscillating gradient spin echo (OGSE) methods. The manner in which ADC d...

متن کامل

Low frequency oscillating gradient spin-echo sequences improve sensitivity to axon diameter: An experimental study in viable nerve tissue

Mapping axon diameters within the central and peripheral nervous system could play an important role in our understanding of nerve pathways, and help diagnose and monitor an array of neurological disorders. Numerous diffusion MRI methods have been proposed for imaging axon diameters, most of which use conventional single diffusion encoding (SDE) spin echo sequences. However, a growing number of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013